3 resultados para ubiquitination

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work outlined in this dissertation will allow biochemists and cellular biologists to characterize polyubiquitin chains involved in their cellular environment by following a facile mass spectrometric based workflow. The characterization of polyubiquitin chains has been of interest since their discovery in 1984. The profound effects of ubiquitination on the movement and processing of cellular proteins depend exclusively on the structures of mono and polyubiquitin modifications anchored or unanchored on the protein within the cellular environment. However, structure-function studies have been hindered by the difficulty in identifying complex chain structures due to limited instrument capabilities of the past. Genetic mutations or reiterative immunoprecipitations have been used previously to characterize the polyubiquitin chains, but their tedium makes it difficult to study a broad ubiquitinome. Top-down and middle-out mass spectral based proteomic studies have been reported for polyubiquitin and have had success in characterizing parts of the chain, but no method to date has been successful at differentiating all theoretical ubiquitin chain isomers (ubiquitin chain lengths from dimer to tetramer alone have 1340 possible isomers). The workflow presented here can identify chain length, topology and linkages present using a chromatographic-time-scale compatible, LC-MS/MS based workflow. To accomplish this feat, the strategy had to exploit the most recent advances in top-down mass spectrometry. This included the most advanced electron transfer dissociation (ETD) activation and sensitivity for large masses from the orbitrap Fusion Lumos. The spectral interpretation had to be done manually with the aid of a graphical interface to assign mass shifts because of a lack of software capable to interpret fragmentation across isopeptide linkages. However, the method outlined can be applied to any mass spectral based system granted it results in extensive fragmentation across the polyubiquitin chain; making this method adaptable to future advances in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exosomes released by myeloid-derived suppressor cells (MDSC) are 30 nm in diameter extracellular vesicles that have been shown to carry biologically active proteins as well as ubiquitin molecules. Ubiquitin is known to have many functions, including involvement in the formation of exosomes, although the exact role is highly contested. In the study reported here, the proteome and ubiquitome of MDSC exosomes has been investigated by bottom-up proteomics techniques. This report identifies more than 1000 proteins contained in the MDSC exosome cargo and 489 sites of ubiquitination in more than 300 ubiquitinated proteins based on recognition of glycinylglycine tagged peptides without antibody enrichment. This has allowed extensive chemical and biological characterization of the ubiquitinated cohort compared to that of the entire protein cargo to support hypotheses on the role of ubiquitin in exosomes.